An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Huacheng Yu

Stanford University

June 8, 2016

Boolean Matrix Multiplication (Boolean MM or BMM):

$$egin{pmatrix} 1 & 0 & \cdots & 1 \ 0 & 1 & \cdots & 0 \ 1 & 1 & \cdots & 1 \ dots & dots & \ddots & dots \ 1 & 0 & \cdots & 0 \end{pmatrix} \cdot egin{pmatrix} 0 & 0 & \cdots & 1 \ 1 & 1 & \cdots & 0 \ 1 & 0 & \cdots & 0 \ dots & dots & \ddots & dots \ 1 & 1 & \cdots & 1 \end{pmatrix} =$$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$\begin{pmatrix} 1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ a_{i,1} & a_{i,2} & \cdots & a_{i,n} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & b_{1,j} & \cdots & 1 \\ 1 & b_{2,j} & \cdots & 0 \\ 1 & b_{3,j} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & b_{n,j} & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 0 \\ 1 & c_{i,j} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,i})$$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

No harder than Integer MM:

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

No harder than Integer MM:

• Strassen [1969]: $O(n^{2.81})$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

No harder than Integer MM:

- Strassen [1969]: $O(n^{2.81})$
- Coppersmith-Winograd [1990]: $O(n^{2.376})$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

No harder than Integer MM:

- Strassen [1969]: $O(n^{2.81})$
- Coppersmith-Winograd [1990]: O(n^{2.376})
- Vassilevska Williams [2012], Le Gall [2014]: $O(n^{2.373})$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

No harder than Integer MM:

- Strassen [1969]: $O(n^{2.81})$
- Coppersmith-Winograd [1990]: O(n^{2.376})
- Vassilevska Williams [2012], Le Gall [2014]: O(n^{2.373})

Algebraic algorithms!

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

Combinatorial algorithms!

• Four Russians [1970]: $O(n^3/\log^2 n)$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

- Four Russians [1970]: $O(n^3/\log^2 n)$
- Bansal-Williams [2009]: $\hat{O}(n^3/\log^{2.25} n)$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

- Four Russians [1970]: $O(n^3/\log^2 n)$
- Bansal-Williams [2009]: $\hat{O}(n^3/\log^{2.25} n)$
- Chan [2015]: $\hat{O}(n^3/\log^3 n)$

Boolean Matrix Multiplication (Boolean MM or BMM):

$$c_{i,j} = \bigvee_{k=1}^{n} (a_{i,k} \wedge b_{k,j})$$

- Four Russians [1970]: $O(n^3/\log^2 n)$
- Bansal-Williams [2009]: $\hat{O}(n^3/\log^{2.25} n)$
- Chan [2015]: $\hat{O}(n^3/\log^3 n)$
- This paper [2015]: $\hat{O}(n^3/\log^4 n)$

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms Combinatorial Algorithms

Asymptotically faster Asymptotically slower

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms Combinatorial Algorithms

Asymptotically faster Asymptotically slower

Difficult to implement Very simple slow in practice fast in practice

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms

Asymptotically faster

Difficult to implement slow in practice

Require similar algebraic structure to generalize

Combinatorial Algorithms

Asymptotically slower

Very simple fast in practice

Generalizable in a different way

Combinatorial algorithms can:

• solve edit distance in $o(n^2)$

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$
- multiply $n \times \hat{O}(\log^3 n)$ and $\hat{O}(\log^3 n) \times n$ Boolean matrices in $O(n^2)$ time

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$
- multiply $n \times \hat{O}(\log^3 n)$ and $\hat{O}(\log^3 n) \times n$ Boolean matrices in $O(n^2)$ time
- multiply $n \times n$ and $n \times \hat{O}(\log^3 n)$ Boolean matrices in $O(n^2)$ time

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$
- multiply $n \times \hat{O}(\log^3 n)$ and $\hat{O}(\log^3 n) \times n$ Boolean matrices in $O(n^2)$ time
- multiply $n \times n$ and $n \times \hat{O}(\log^3 n)$ Boolean matrices in $O(n^2)$ time
- preprocess a Boolean matrix A, answer queries Ax in $n^2/\log^2 n$

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$
- multiply $n \times \hat{O}(\log^3 n)$ and $\hat{O}(\log^3 n) \times n$ Boolean matrices in $O(n^2)$ time
- multiply $n \times n$ and $n \times \hat{O}(\log^3 n)$ Boolean matrices in $O(n^2)$ time
- preprocess a Boolean matrix A, answer queries Ax in $n^2/\log^2 n$
 - Larsen-Williams [2016]: $n^2/2^{\Omega(\sqrt{\log n})}$ (by a half-algebraic algorithm)

- solve edit distance in $o(n^2)$
- solve sequence alignment in $o(n^2)$
- multiply $n \times \hat{O}(\log^3 n)$ and $\hat{O}(\log^3 n) \times n$ Boolean matrices in $O(n^2)$ time
- multiply $n \times n$ and $n \times \hat{O}(\log^3 n)$ Boolean matrices in $O(n^2)$ time
- preprocess a Boolean matrix A, answer queries Ax in $n^2/\log^2 n$
 - Larsen-Williams [2016]: $n^2/2^{\Omega(\sqrt{\log n})}$ (by a half-algebraic algorithm) (randomized, heavy preprocessing or amortized time)

Triangle Detection

Triangle detection: given an n-node graph, does it contain a triangle (3-clique or 3-cycle)?

Triangle Detection

Triangle detection: given an n-node graph, does it contain a triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection $\stackrel{\text{"sub-cubic"}}{\longleftrightarrow}$ Boolean MM

Triangle Detection

Triangle detection: given an n-node graph, does it contain a triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection
$$\stackrel{\text{"sub-cubic"}}{\longleftarrow}$$
 Boolean MM
$$O(\mathfrak{n}^3/g(\mathfrak{n})) \xrightarrow{\text{combinatorial}} O(\mathfrak{n}^3/g(\mathfrak{n}^{1/3}))$$

Our main theorem:

Theorem

Given a graph G on n vertices

Our main theorem:

Theorem

Given a graph G on $\mathfrak n$ vertices, we can detect if there is a triangle in G using a combinatorial algorithm in $\hat{O}(\mathfrak n^3/\log^4\mathfrak n)$ time.

Our main theorem:

Theorem

Given a graph G on $\mathfrak n$ vertices, we can detect if there is a triangle in G using a combinatorial algorithm in $\hat{O}(\mathfrak n^3/\log^4\mathfrak n)$ time.

A general framework for triangle detection:

Our main theorem:

$\mathsf{Theorem}$

Given a graph G on $\mathfrak n$ vertices, we can detect if there is a triangle in G using a combinatorial algorithm in $\hat O(\mathfrak n^3/\log^4\mathfrak n)$ time.

A general framework for triangle detection:

"Theorem"

If there is an algorithm that takes a graph and can "efficiently" find and solve triangle detection on a "large" subgraph

Our main theorem:

Theorem

Given a graph G on $\mathfrak n$ vertices, we can detect if there is a triangle in G using a combinatorial algorithm in $\hat{O}(\mathfrak n^3/\log^4\mathfrak n)$ time.

A general framework for triangle detection:

"Theorem"

If there is an algorithm that takes a graph and can "efficiently" find and solve triangle detection on a "large" subgraph, then triangle detection is "easy" in general.

Triangle Detection Algorithm

Preliminaries

Wish to detect if a graph G contains a triangle.

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

Wish to detect if a graph G contains a triangle.

Wish to detect if a graph G contains a triangle.

Wish to detect if a graph G contains a triangle.

Wish to detect if a graph G contains a triangle.

Wish to detect if a tripartite graph $G = (A \cup B \cup C, E)$ contains a triangle.

Wish to detect if a tripartite graph $G = (A \cup B \cup C, E)$ contains a triangle.

 One naïve approach: for v ∈ A, check edge between its neighbours

- One naïve approach: for $v \in A$, check edge between its neighbours
- spend $d_{v,B}d_{v,C}$ time

- One naïve approach: for v ∈ A, check edge between its neighbours
- spend $d_{v,B}d_{v,C}$ time
- fast if $d_{v,B}d_{v,C}$ small on average

- One naïve approach: for v ∈ A, check edge between its neighbours
- spend $d_{v,B}d_{v,C}$ time
- fast if $d_{v,B}d_{v,C}$ small on average
- otherwise can find large "non-edge area" between B and C

- One naïve approach: for $v \in A$, check edge between its neighbours
- spend $d_{v,B}d_{v,C}$ time
- fast if $d_{v,B}d_{v,C}$ small on average
- otherwise can find large "non-edge area" between B and C
- recursion! (also used in Chan's algorithm)

The sparse case: $d_{\nu,B} \, d_{\nu,C} \leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu \in A.$

The sparse case: $d_{\nu,B} d_{\nu,C} \leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu \in A$. Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $n^2(\log^3 n)^{0.2\log n/\log\log n} = O(n^{2.6})$.

The sparse case: $d_{\nu,B}d_{\nu,C}\leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu\in A.$

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

The sparse case: $d_{\nu,B} d_{\nu,C} \leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu \in A$.

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

 for v ∈ A, partition its neighbourhood into small subsets within each block

The sparse case: $d_{\nu,B}d_{\nu,C}\leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu\in A.$

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

 for v ∈ A, partition its neighbourhood into small subsets within each block

The sparse case: $d_{\nu,B}d_{\nu,C}\leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu\in A.$

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

- for v ∈ A, partition its neighbourhood into small subsets within each block
- check each pair of small subsets by lookup table

The sparse case: $d_{\nu,B}d_{\nu,C}\leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu\in A.$

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

- for v ∈ A, partition its neighbourhood into small subsets within each block
- check each pair of small subsets by lookup table
- $\hat{O}(d_{\nu,B}/\log n + n/\log^3 n)$, $\hat{O}(d_{\nu,C}/\log n + n/\log^3 n)$ small subsets respectively

The sparse case: $d_{\nu,B}d_{\nu,C} \leqslant \hat{O}(n^2/\log^2 n)$ for every $\nu \in A$.

Solvable in time $\hat{O}(n^3/\log^4 n)$.

Preprocessing: $O(n^{2.6})$.

- for v ∈ A, partition its neighbourhood into small subsets within each block
- check each pair of small subsets by lookup table
- $\hat{O}(d_{\nu,B}/\!\log n + n/\log^3 n), \\ \hat{O}(d_{\nu,C}/\!\log n + n/\log^3 n) \\ \text{small subsets respectively}$

Spend $\hat{O}(n^3/\log^4 n)$ in total.

Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

```
Given an n-node tripartite graph, fix \Delta = \frac{\log n}{100(\log\log n)^2}.
```

Step 0: If
$$|B| < \sqrt{n}$$
 or $|C| < \sqrt{n}$, use exhaustive search;

Step 1:

Step 2:

Step 3:

Step 4:

```
Given an n-node tripartite graph, fix \Delta = \frac{\log n}{100(\log \log n)^2}.
```

Step 0: If
$$|B| < \sqrt{n}$$
 or $|C| < \sqrt{n}$, use exhaustive search;

- Step 1: If for every $v \in A$, $d_{v,B}d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2:
- Step 3:
- Step 4:

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \ge |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3:
- Step 4:

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$; let B_{ν} [resp. C_{ν}] be ν 's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4:

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B}d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$; let B_{ν} [resp. C_{ν}] be ν 's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$,

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$; let B_{ν} [resp. C_{ν}] be ν 's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

```
Step 4: If |B_{\nu}|/|B| > |C_{\nu}|/|C|, then recurse on (A,B,C\setminus C_{\nu}) and (A,B\setminus B_{\nu},C_{\nu}), else recurse on (A,B\setminus B_{\nu},C) and (A,B_{\nu},C\setminus C_{\nu}).
```

Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$; let B_{ν} [resp. C_{ν}] be ν 's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$; let B_{ν} [resp. C_{ν}] be ν 's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

Correctness: straightforward.

- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \geqslant |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.

- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \geqslant |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.

- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)
- Step 1: If for every $v \in A$, $d_{v,B}d_{v,C} \le |B||C|/\Delta^2$, use the sparse case algorithm; $\hat{O}(n|B||C|/\log^4 n)$
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \geqslant |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.

```
Step 0: If |B| < \sqrt{n} or |C| < \sqrt{n}, use exhaustive search; O(n|B||C|)
Step 1: If for every v \in A, d_{v,B}d_{v,C} \leq |B||C|/\Delta^2, use the sparse
                                                              \hat{O}(n|B||C|/\log^4 n)
           case algorithm:
Step 2: Otherwise, find a v \in A such that d_{v,B} d_{v,C} \ge |B||C|/\Delta^2;
           let B_{\nu} [resp. C_{\nu}] be \nu's neighbourhood in B [resp. C];
                                                                  O(n(|B| + |C|))
Step 3: Check all pairs in B_v \times C_v for an edge;
                                                                       O(|B_{\nu}||C_{\nu}|)
Step 4: If |B_y|/|B| > |C_y|/|C|.
           then recurse on (A, B, C \setminus C_{\nu}) and (A, B \setminus B_{\nu}, C_{\nu}),
           else recurse on (A, B \setminus B_{\nu}, C) and (A, B_{\nu}, C \setminus C_{\nu}).
                                                                  O(n(|B| + |C|))
```

- Small graph case:
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)
- Step 1: If for every $v \in A$, $d_{v,B}d_{v,C} \le |B||C|/\Delta^2$, use the sparse case algorithm; $\hat{O}(n|B||C|/\log^4 n)$
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B}d_{v,C} \ge |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C]; O(n(|B| + |C|))
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge; $O(|B_{\nu}||C_{\nu}|)$
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

$$O(\mathfrak{n}(|B|+|C|))$$

- Small graph case:
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)
- Large graph case:
- Step 1: If for every $v \in A$, $d_{v,B}d_{v,C} \le |B||C|/\Delta^2$, use the sparse case algorithm; $\hat{O}(n|B||C|/\log^4 n)$
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B}d_{v,C} \ge |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C]; O(n(|B| + |C|))
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge; $O(|B_{\nu}||C_{\nu}|)$
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$. O(n(|B|+|C|))

- Small graph case

```
Step 0: If |B| < \sqrt{n} or |C| < \sqrt{n}, use exhaustive search; O(n|B||C|)
```

- Large graph case:

```
Step 1: If for every v \in A, d_{v,B}d_{v,C} \le |B||C|/\Delta^2, use the sparse case algorithm; \hat{O}(n|B||C|/\log^4 n)
```

Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \ge |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C]; O(n(|B| + |C|))

```
Step 3: Check all pairs in B_{\nu} \times C_{\nu} for an edge; O(|B_{\nu}||C_{\nu}|)
```

Step 4: If
$$|B_{\nu}|/|B| > |C_{\nu}|/|C|$$
, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.
$$O(n(|B|+|C|))$$

```
Large graph case (|B|, |C| \geqslant \sqrt{n}):
Step 1: If for every v \in A, d_{v.B}d_{v.C} \leq |B||C|/\Delta^2, use the sparse
                                                              \hat{O}(n|B||C|/\log^4 n)
           case algorithm;
Step 2: Otherwise, find a v \in A such that d_{v,B} d_{v,C} \ge |B||C|/\Delta^2;
           let B_{\nu} [resp. C_{\nu}] be \nu's neighbourhood in B [resp. C];
                                                                  O(n(|B| + |C|))
Step 3: Check all pairs in B_v \times C_v for an edge;
                                                                       O(|B_{\nu}||C_{\nu}|)
Step 4: If |B_y|/|B| > |C_y|/|C|.
           then recurse on (A, B, C \setminus C_v) and (A, B \setminus B_v, C_v).
           else recurse on (A, B \setminus B_{\nu}, C) and (A, B_{\nu}, C \setminus C_{\nu}).
                                                                   O(n(|B| + |C|))
```

```
Large graph case (|B|, |C| \geqslant \sqrt{n}):

• sparse case algorithm.

$\hat{O}(n|B||C|/\log^4 n)$
$$ Step 2: Otherwise, find a $\nu \in A$ such that $d_{\nu,B}d_{\nu,C} \ge |B||C|/\Delta^2$; let $B_{\nu}$ [resp. $C_{\nu}$] be $\nu'$'s neighbourhood in $B$ [resp. $C$]$; $O(n(|B|+|C|))$
$$ Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge; $O(|B_{\nu}||C_{\nu}|)$
$$ Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C \ C_{\nu})$ and $(A,B \ B_{\nu},C_{\nu})$, else recurse on $(A,B \ B_{\nu},C)$ and $(A,B_{\nu},C \ C_{\nu})$.
```

Large graph case (|B|, $|C| \geqslant \sqrt{n}$):

- sparse case algorithm. $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))

Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge; $O(|B_{\nu}||C_{\nu}|)$

Large graph case (|B|, $|C| \geqslant \sqrt{n}$):

• sparse case algorithm.

- $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- $\bullet \ \text{check} \ B_{\nu} \times C_{\nu}.$ $O(|B_{\nu}||C_{\nu}|)$

Large graph case (|B|, $|C| \geqslant \sqrt{n}$):

• sparse case algorithm.

- $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- $\bullet \ \text{check} \ B_{\nu} \times C_{\nu}.$ $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

Large graph case (|B|, $|C| \geqslant \sqrt{n}$):

• sparse case algorithm.

- $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- check $B_{\nu} \times C_{\nu}$. $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

• sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair

Large graph case ($|B|, |C| \ge \sqrt{n}$):

sparse case algorithm.

- $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- check $B_v \times C_v$.

 $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly.
 - $\hat{O}(n/\log^4 n)$ per pair

Large graph case (|B|, $|C| \ge \sqrt{n}$):

- sparse case algorithm.
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- check $B_{\nu} \times C_{\nu}$. $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair
- dense case: charge to $B_v \times C_v$ evenly. $O(\sqrt{n} \log^2 n)$ per pair

Large graph case (|B|, $|C| \ge \sqrt{n}$):

- sparse case algorithm.
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- $\bullet \ \text{check} \ B_{\nu} \times C_{\nu}.$ $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair
- dense case: charge to $B_v \times C_v$ evenly. $O(\sqrt{n} \log^2 n)$ per pair

Large graph case (|B|, $|C| \ge \sqrt{n}$):

- sparse case algorithm.
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- check $B_{\nu} \times C_{\nu}$. $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair
- dense case: charge to $B_{\nu} \times C_{\nu}$ evenly. $O(\sqrt{n} \log^2 n)$ per pair

Every pair is charged at most once!

Large graph case ($|B|, |C| \ge \sqrt{n}$):

- sparse case algorithm.
- $\hat{O}(n|B||C|/\log^4 n)$
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- check $B_v \times C_v$. $O(|B_v||C_v|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair
- dense case: charge to $B_v \times C_v$ evenly. $O(\sqrt{n} \log^2 n)$ per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Large graph case (|B|, $|C| \ge \sqrt{n}$):

- sparse case algorithm.
- check degrees, generate inputs for recursion. O(n(|B| + |C|))
- $\bullet \ \text{check} \ B_{\nu} \times C_{\nu}.$ $O(|B_{\nu}||C_{\nu}|)$

Charge the running time to pairs in $B \times C$:

- sparse case: charge to $B \times C$ evenly. $\hat{O}(n/\log^4 n)$ per pair
- dense case: charge to $B_{\nu} \times C_{\nu}$ evenly. $O(\sqrt{n} \log^2 n)$ per pair

Every pair is charged at most once!

• only charge to pairs not going into the same recursive branch.

Time spent on large graph case: $\hat{O}(n^3/\log^4 n)$.

- Small graph case:

```
Step 0: If |B| < \sqrt{n} or |C| < \sqrt{n}, use exhaustive search; O(n|B||C|)
```

Large graph case

```
Step 1: If for every v \in A, d_{v,B}d_{v,C} \le |B||C|/\Delta^2, use the sparse case algorithm; \hat{O}(n|B||C|/\log^4 n)
```

Step 2: Otherwise, find a $v \in A$ such that $d_{v,B}d_{v,C} \ge |B||C|/\Delta^2$; let B_v [resp. C_v] be v's neighbourhood in B [resp. C];

```
Step 3: Check all pairs in B_v \times C_v for an edge; O(|B_v||C_v|)
```

Step 4: If
$$|B_{\nu}|/|B| > |C_{\nu}|/|C|$$
, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$ else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.

Step 0: If
$$|B| < \sqrt{n}$$
 or $|C| < \sqrt{n}$, use exhaustive search; $O(n|B||C|)$

Let
$$\nu \colon \, d_{\nu,B} \, d_{\nu,C} \geqslant |B||C|/\Delta^2. \, \, \big(\Delta = \Theta(\log n/(\log\log n)^2)\big)$$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta$, $d_{\nu,C}=|C|/\Delta$.

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let $\nu \colon \, d_{\nu,B} \, d_{\nu,C} \geqslant |B||C|/\Delta^2. \, \, \big(\Delta = \Theta(\log n/(\log\log n)^2)\big)$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let $\nu \colon \, d_{\nu,B} \, d_{\nu,C} \geqslant |B||C|/\Delta^2. \, \left(\Delta = \Theta(\log n/(\log\log n)^2)\right)$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $(\Delta=\Theta(\log n/(\log\log n)^2))$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$. $(\Delta = \Theta(\log n/(\log\log n)^2))$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B} d_{\nu,C} \geqslant |B||C|/\Delta^2$. $(\Delta = \Theta(\log n/(\log\log n)^2))$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta,d_{\nu,C}=|C|/\Delta$.

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta$, $d_{\nu,C}=|C|/\Delta$.

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta$, $d_{\nu,C}=|C|/\Delta$.

 $\Omega(\Delta \log \log n)$ right steps: $O(n^3/\log^{10} n)$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; O(n|B||C|)

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta$, $d_{\nu,C}=|C|/\Delta$.

$$\Omega(\Delta \log \log n)$$
 right steps: $O(n^3/\log^{10} n)$

nodes with $O(\Delta \log \log n)$ right steps: $n^{0.4}$

Step 0: If
$$|B| < \sqrt{n}$$
 or $|C| < \sqrt{n}$, use exhaustive search; $O(n|B||C|) \le O(n^{2.5})$

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta, d_{\nu,C}=|C|/\Delta$.

$$\frac{\Omega(\Delta \log \log n)}{O(n^3/\log^{10} n)} \text{ right steps:}$$

nodes with $O(\Delta \log \log n)$ right steps: $n^{0.4}$

Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search; $O(n|B||C|) \le O(n^{2.5})$

Let ν : $d_{\nu,B}d_{\nu,C}\geqslant |B||C|/\Delta^2$. $\left(\Delta=\Theta(\log n/(\log\log n)^2)\right)$ For simplicity, assume $d_{\nu,B}=|B|/\Delta, d_{\nu,C}=|C|/\Delta$.

 $\Omega(\Delta \log \log n)$ right steps: $O(n^3/\log^{10} n)$

nodes with $O(\Delta \log \log n)$ right steps: $n^{0.4}$

 $O(n^3/\log^{10} n)$ time.

The Algorithm

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \geqslant |B||C|/\Delta^2$; Let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A, B, C \setminus C_{\nu})$ and $(A, B \setminus B_{\nu}, C_{\nu})$, else recurse on $(A, B \setminus B_{\nu}, C)$ and $(A, B_{\nu}, C \setminus C_{\nu})$.

Correctness: straightforward.

The Algorithm

- Given an n-node tripartite graph, fix $\Delta = \frac{\log n}{100(\log \log n)^2}$.
- Step 0: If $|B| < \sqrt{n}$ or $|C| < \sqrt{n}$, use exhaustive search;
- Step 1: If for every $v \in A$, $d_{v,B} d_{v,C} \leq |B||C|/\Delta^2$, use the sparse case algorithm;
- Step 2: Otherwise, find a $v \in A$ such that $d_{v,B} d_{v,C} \geqslant |B||C|/\Delta^2$; Let B_v [resp. C_v] be v's neighbourhood in B [resp. C];
- Step 3: Check all pairs in $B_{\nu} \times C_{\nu}$ for an edge;
- Step 4: If $|B_{\nu}|/|B| > |C_{\nu}|/|C|$, then recurse on $(A,B,C\setminus C_{\nu})$ and $(A,B\setminus B_{\nu},C_{\nu})$, else recurse on $(A,B\setminus B_{\nu},C)$ and $(A,B_{\nu},C\setminus C_{\nu})$.
- Correctness: straightforward. Running time: $\hat{O}(n^3/\log^4 n)$.

• $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection
- Open problem:

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection
- Open problem:
 - Triangle detection on tripartite graphs with vertex set sizes $n, n, \hat{O}(\log^4 n)$ in $O(n^2)$ time?

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection
- Open problem:
 - Triangle detection on tripartite graphs with vertex set sizes $n, n, \hat{O}(\log^4 n)$ in $O(n^2)$ time?
 - Multiplying $n \times n$ and $n \times \hat{O}(\log^4 n)$ Boolean matrices in $O(n^2)$

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection
- Open problem:
 - Triangle detection on tripartite graphs with vertex set sizes $n, n, \hat{O}(\log^4 n)$ in $O(n^2)$ time?
 - Multiplying $n \times n$ and $n \times \hat{O}(\log^4 n)$ Boolean matrices in $O(n^2)$
 - Current record: $\hat{O}(\log^3 n)$ by Chan.

- $\hat{O}(n^3/\log^4 n)$ time algorithm for triangle detection and Boolean MM
- A general framework for triangle detection
- Open problem:
 - Triangle detection on tripartite graphs with vertex set sizes $n, n, \hat{O}(\log^4 n)$ in $O(n^2)$ time?
 - Multiplying $n \times n$ and $n \times \hat{O}(\log^4 n)$ Boolean matrices in $O(n^2)$
 - Current record: $\hat{O}(\log^3 n)$ by Chan.

Thanks!

