
Introduction
Triangle Detection Algorithm

Conclusion

An Improved Combinatorial Algorithm for Boolean
Matrix Multiplication

Huacheng Yu

Stanford University

June 8, 2016

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):


1 0 · · · 1
0 1 · · · 0
1

ai,1

1

ai,2

· · · 1

ai,n

...
...

. . .
...

1 0 · · · 0

 ·


0 0

b1,j

· · · 1
1 1

b2,j

· · · 0
1 0

b3,j

· · · 0
...

...
. . .

...
1 1

bn,j

· · · 1

 =


1 1 · · · 1
1 1 · · · 0
1 ci,j · · · 1

...
...

. . .
...

0 0 · · · 1


∨n
k=1(ai,k ∧ bk,j)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):


1 0 · · · 1
0 1 · · · 0

1

ai,1

1

ai,2 · · ·

1

ai,n
...

...
. . .

...
1 0 · · · 0

 ·


0

0

b1,j · · · 1
1

1

b2,j · · · 0
1

0

b3,j · · · 0
...

...
. . .

...
1

1

bn,j · · · 1

 =


1 1 · · · 1
1 1 · · · 0
1 ci,j · · · 1

...
...

. . .
...

0 0 · · · 1


∨n
k=1(ai,k ∧ bk,j)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

No harder than Integer MM:

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

No harder than Integer MM:

Strassen [1969]: O(n2.81)

Coppersmith-Winograd [1990]: O(n2.376)

Vassilevska Williams [2012], Le Gall [2014]: O(n2.373)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

No harder than Integer MM:

Strassen [1969]: O(n2.81)

Coppersmith-Winograd [1990]: O(n2.376)

Vassilevska Williams [2012], Le Gall [2014]: O(n2.373)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

No harder than Integer MM:

Strassen [1969]: O(n2.81)

Coppersmith-Winograd [1990]: O(n2.376)

Vassilevska Williams [2012], Le Gall [2014]: O(n2.373)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

No harder than Integer MM:

Strassen [1969]: O(n2.81)

Coppersmith-Winograd [1990]: O(n2.376)

Vassilevska Williams [2012], Le Gall [2014]: O(n2.373)

Algebraic algorithms!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Combinatorial algorithms!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Combinatorial algorithms!
Four Russians [1970]: O(n3/ log2 n)

Bansal-Williams [2009]: Ô(n3/ log2.25 n)

Chan [2015]: Ô(n3/ log3 n)

This paper [2015]: Ô(n3/ log4 n)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Combinatorial algorithms!
Four Russians [1970]: O(n3/ log2 n)

Bansal-Williams [2009]: Ô(n3/ log2.25 n)

Chan [2015]: Ô(n3/ log3 n)

This paper [2015]: Ô(n3/ log4 n)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Combinatorial algorithms!
Four Russians [1970]: O(n3/ log2 n)

Bansal-Williams [2009]: Ô(n3/ log2.25 n)

Chan [2015]: Ô(n3/ log3 n)

This paper [2015]: Ô(n3/ log4 n)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Introduction

Boolean Matrix Multiplication (Boolean MM or BMM):

ci,j =

n∨
k=1

(ai,k ∧ bk,j)

Combinatorial algorithms!
Four Russians [1970]: O(n3/ log2 n)

Bansal-Williams [2009]: Ô(n3/ log2.25 n)

Chan [2015]: Ô(n3/ log3 n)

This paper [2015]: Ô(n3/ log4 n)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms

Asymptotically faster

Difficult to implement
slow in practice

Require similar algebraic
structure to generalize

Combinatorial Algorithms

Asymptotically slower

Very simple
fast in practice

Generalizable in a different way

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms

Asymptotically faster

Difficult to implement
slow in practice

Require similar algebraic
structure to generalize

Combinatorial Algorithms

Asymptotically slower

Very simple
fast in practice

Generalizable in a different way

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms

Asymptotically faster

Difficult to implement
slow in practice

Require similar algebraic
structure to generalize

Combinatorial Algorithms

Asymptotically slower

Very simple
fast in practice

Generalizable in a different way

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm) (randomized, heavy preprocessing or amortized
time)

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Triangle Detection

Triangle detection: given an n-node graph, does it contain a
triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection
“sub-cubic”

Boolean MM

O(n3/g(n))
combinatorial

O(n3/g(n1/3))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Triangle Detection

Triangle detection: given an n-node graph, does it contain a
triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection
“sub-cubic”

Boolean MM

O(n3/g(n))
combinatorial

O(n3/g(n1/3))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Triangle Detection

Triangle detection: given an n-node graph, does it contain a
triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection
“sub-cubic”

Boolean MM

O(n3/g(n))
combinatorial

O(n3/g(n1/3))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Main Result

Our main theorem:

Theorem

Given a graph G on n vertices

, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph, then triangle
detection is “easy” in general.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Main Result

Our main theorem:

Theorem

Given a graph G on n vertices, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph, then triangle
detection is “easy” in general.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Main Result

Our main theorem:

Theorem

Given a graph G on n vertices, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph, then triangle
detection is “easy” in general.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Main Result

Our main theorem:

Theorem

Given a graph G on n vertices, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph

, then triangle
detection is “easy” in general.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Main Result

Our main theorem:

Theorem

Given a graph G on n vertices, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph, then triangle
detection is “easy” in general.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Triangle Detection Algorithm

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a graph G contains a triangle.

Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.
Observation: can assume G is tripartite.

i

j

i

j

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),

else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

B C

Cv

B C

Bv

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

B C

Cv

B C

Bv

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

B C

Cv

B C

Bv

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Correctness: straightforward.

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge;

O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge;

O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge;

O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))
Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)
Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair
dense case: charge to Bv × Cv evenly. O(

√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))
Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)
Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair
dense case: charge to Bv × Cv evenly. O(

√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)

check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair

dense case: charge to Bv × Cv evenly. O(
√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))

For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))
For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
Let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Correctness: straightforward.

Running time: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
Let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Correctness: straightforward. Running time: Ô(n3/ log4 n).

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?

Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)

Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

Introduction
Triangle Detection Algorithm

Conclusion

Conclusion

Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!

Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication

	Introduction
	Triangle Detection Algorithm
	Conclusion

