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Combinatorial algorithms!
Four Russians [1970]: O(n3/ log2 n)

Bansal-Williams [2009]: Ô(n3/ log2.25 n)

Chan [2015]: Ô(n3/ log3 n)
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Algebraic vs Combinatorial

On Boolean MM:

Algebraic Algorithms

Asymptotically faster

Difficult to implement
slow in practice

Require similar algebraic
structure to generalize

Combinatorial Algorithms

Asymptotically slower

Very simple
fast in practice

Generalizable in a different way
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Combinatorial Algorithms

Combinatorial algorithms can:

solve edit distance in o(n2)

solve sequence alignment in o(n2)

multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time

multiply n× n and n× Ô(log3 n) Boolean matrices in O(n2)
time

preprocess a Boolean matrix A, answer queries Ax in
n2/ log2 n

Larsen-Williams [2016]: n2/2Ω(
√
logn) (by a half-algebraic

algorithm)

(randomized, heavy preprocessing or amortized
time)
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multiply n× Ô(log3 n) and Ô(log3 n)× n Boolean matrices
in O(n2) time
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Triangle Detection

Triangle detection: given an n-node graph, does it contain a
triangle (3-clique or 3-cycle)?

Vassilevska Williams and Williams [2010] proved:

Triangle detection
“sub-cubic”

Boolean MM

O(n3/g(n))
combinatorial

O(n3/g(n1/3))
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Main Result

Our main theorem:

Theorem

Given a graph G on n vertices

, we can detect if there is a triangle
in G using a combinatorial algorithm in Ô(n3/ log4 n) time.

A general framework for triangle detection:

“Theorem”

If there is an algorithm that takes a graph and can“efficiently” find
and solve triangle detection on a “large” subgraph, then triangle
detection is “easy” in general.
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Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.
Observation: can assume G is tripartite.
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Preliminaries

Wish to detect if a tripartite graph G = (A ∪ B ∪ C,E) contains a
triangle.

One näıve approach:
for v ∈ A, check edge between its
neighbours

spend dv,Bdv,C time

fast if dv,Bdv,C small on average

otherwise can find large “non-edge
area” between B and C

recursion! (also used in Chan’s
algorithm)

A

B C

v
dv,B dv,C
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The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

B C

log3n

log3n

6 0.1 logn
log logn

∃ edge?

Preprocessing: n2(log3 n)0.2 logn/ log logn = O(n2.6).
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The Sparse Case

The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).

Preprocessing: O(n2.6).

for v ∈ A, partition its
neighbourhood into small
subsets within each block

check each pair of small
subsets by lookup table

Ô(dv,B/logn+ n/ log3 n),
Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.
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The sparse case: dv,Bdv,C 6 Ô(n2/ log2 n) for every v ∈ A.

Solvable in time Ô(n3/ log4 n).
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Ô(dv,C/logn+ n/ log3 n)
small subsets respectively

B C

log3n

6 0.1 logn
log logn

∃ edge?

Spend Ô(n3/ log4 n) in total.
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The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).
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The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Correctness: straightforward.
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Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge;

O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))
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Large Graph Case

Large graph case (|B|, |C| >
√
n):

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))
Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)
Step 4: If |Bv|/|B| > |Cv|/|C|,

then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair
dense case: charge to Bv × Cv evenly. O(

√
n log2 n) per pair

Every pair is charged at most once!

only charge to pairs not going into the same recursive branch.

Time spent on large graph case: Ô(n3/ log4 n).
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check degrees, generate inputs for recursion. O(n(|B|+ |C|))

check Bv × Cv. O(|Bv||Cv|)

Charge the running time to pairs in B× C:

sparse case: charge to B× C evenly. Ô(n/ log4 n) per pair
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Time spent on large graph case: Ô(n3/ log4 n).
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Huacheng Yu An Improved Combinatorial Algorithm for Boolean Matrix Multiplication



Introduction
Triangle Detection Algorithm

Conclusion

Large Graph Case

Large graph case (|B|, |C| >
√
n):

sparse case algorithm. Ô(n|B||C|/ log4 n)
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Analysis of the Running Time

- Small graph case:

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

- Large graph case:

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm; Ô(n|B||C|/ log4 n)

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

O(n(|B|+ |C|))

Step 3: Check all pairs in Bv × Cv for an edge; O(|Bv||Cv|)

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

O(n(|B|+ |C|))
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Small Graph Case

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search; O(n|B||C|)

6 O(n2.5)

Let v: dv,Bdv,C > |B||C|/∆2. (∆ = Θ(logn/(log logn)2))

For simplicity, assume dv,B = |B|/∆,dv,C = |C|/∆.

n2

(1 − ∆−1)n2
∆−1(1 − ∆−1)n2

∆−1(1 − ∆−1)2n2

∆−1(1 − ∆−1)3n2

· · · · · ·

(1 − ∆−1)n2

Ω(∆ log logn) right steps:
O(n3/ log10 n)

# nodes with O(∆ log logn)
right steps: n0.4

O(n3/ log10 n) time.

B C

B C
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The Algorithm

Given an n-node tripartite graph, fix ∆ = logn
100(log logn)2

.

Step 0: If |B| <
√
n or |C| <

√
n, use exhaustive search;

Step 1: If for every v ∈ A, dv,Bdv,C 6 |B||C|/∆2, use the sparse
case algorithm;

Step 2: Otherwise, find a v ∈ A such that dv,Bdv,C > |B||C|/∆2;
Let Bv [resp. Cv] be v’s neighbourhood in B [resp. C];

Step 3: Check all pairs in Bv × Cv for an edge;

Step 4: If |Bv|/|B| > |Cv|/|C|,
then recurse on (A,B,C \ Cv) and (A,B \ Bv,Cv),
else recurse on (A,B \ Bv,C) and (A,Bv,C \ Cv).

Correctness: straightforward.

Running time: Ô(n3/ log4 n).
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Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
n,n, Ô(log4 n) in O(n2) time?
Multiplying n× n and n× Ô(log4 n) Boolean matrices in
O(n2)
Current record: Ô(log3 n) by Chan.

Thanks!
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Ô(n3/ log4 n) time algorithm for triangle detection and
Boolean MM

A general framework for triangle detection

Open problem:

Triangle detection on tripartite graphs with vertex set sizes
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