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Euclidean Minimum Spanning Tree

Euclidean MST

Given a set P of n points in R, the
EMST of P is the minimum spanning
tree of the complete graph on P,
where each edge is weighted by the
Euclidean distance between these
points.

@ d is constant

@ Results generalize to common
norms (Ly, Loo)
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Approximate EMST

Exact
As d grows, exact algorithms for the
EMST run in nearly quadratic time.
e-Approximate EMST Approximate

Return a spanning tree whose weight
is at most (1 + &) - wt(MST(P)).
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Prior Results - Computing the Whole Tree

e Exact in RY:

o Yao (1982): O(n> 1)

o Agarwal et al. (1991): 5(n2’3)
@ c-Approximate in R?: (Asymptotic d)

o Har-Peled, et al. (2012): Roughly 5(d . n”l%e) — using LSH
e e-Approximate in R?: (Constant d)

o Vaidya (1991): O(s~¢ - n)

o Callahan and Kosaraju (1995): O(~? - n) — using WSPDs

o Arya and Chan (2014): 5(5’(%+O(1)) - n) — using DVDs

d
2

Ideal: Nearly linear in n and low dependency on e: 55 — —7 — 5 — -+
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Prior Results - Estimating the Weight

e-Approximating the weight of the MST (w.h.p.) in sublinear time:

o Chazelle et al. (2005) O(DWe—3)
(for graphs of degree D and edge-weight spread W)

o Czumaj et al. (2005) Roughly O(y/n- &%) for EMST
(assuming appropriate geometric oracles)

@ Czumaj and Sohler (2009) O(n - poly(1/¢)) for MST in metric space
(presented as an n x n distance matrix)
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Introduction

Main Result

Existing approximation algorithms either:
o Have e-factors that grow exponentially with dimension (¢=¢ or 5*%)
— or —

@ Just estimate the weight of the EMST

€ dependencies are a major issue. Is it possible to reduce them?
Main result:
e c-approximate EMSTs in R? in O(c~2n) time (constants depend on d)

e Simple, deterministic algorithm (quadtrees, well-separated pairs)

@ Exploits a simple EMST lower bound (Czumaj et al. 2005) and an
amortization trick
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Roadmap

@ Preliminaries - Well-separated pairs, quadtrees, EMST lower bound
@ Algorithm - Getting closest pairs on the cheap

@ Analysis - On the importance of being sloppy
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Well-Separated Pairs

Well-Separated Pair:

Given a separation parameter o > 1, two point
sets A and B are o-well separated if they can be
enclosed within balls of radius r such that the
closest distance between these balls is at least o r
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Preliminaries

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition (WSPD):

Given a point set P, a 0-WSPD is a set of
pairs {{A;, B;}}*_, of subsets of P such that:

(1) for 1 < i< k, A; and B; are o-well
separated

(2) for any p, g € P, there is exactly one pair
{A;, B;} such that p € A; and g € B;

v
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Useful Observations (Callahan and Kosaraju (1995))

@ A 2-WSPD of size O(n) can be constructed B;

in time O(nlog n) @
@ Each pair of a 2-WSPD contributes at most A

one edge to the EMST @

o Given a 2-WSPD for P, form a graph G from
the closest pair from each (A;, B;)

o |G| = O(n(2Vd)?) = O(n)
o MST(G) = EMST(P)

@ c-approximate closest pairs yield a graph G
o wt(MST(G.)) < (1+¢)- wt(EMST(P))
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Fast EMST Lower Bound

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in RY. Let m be
the number of grid boxes containing at least one
point of P. Then there is a constant ¢ (depending
on d) such that wt(MST(P)) > sm/c.

Proof:

@ Color the grid with 29 colors. Boxes of the
same color are separated by distance > s

@ Some color class has at least m/29 boxes
@ The cost of connecting these boxes is Q(sm)

YR 13
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Roadmap

@ Preliminaries - Well-separated pairs, quadtrees, EMST lower bound
@ Algorithm - Getting closest pairs on the cheap

@ Analysis - On the importance of being sloppy
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Simple (Slow) Algorithm

Compute a 2-WSPD for P
Each box stores a representative point
For each WSP (A;, B;):

o Let s be the box size. Subdivide A; and B;
until the box diameter < ¢es
o (pi, qi) + closest pair of box representatives

G + closest pairs. Return MST(G)

Slow! O(n/(c?)?) = O(n-e~29).

Worst case arises when pairs have many boxes.

By Lower-Bound Lemma, MST cost is high.

Arya and Mount
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A Smarter/Sloppier Algorithm

o Compute a 2-WSPD for P

@ Each box stores a representative point

@ For each (A;, B;) approximate the closest
pair:

o Let s be the box size. Subdivide A; and B;
until either:

o Box diameter < es — or —

@ The number of nonempty boxes > c/e
(for some constant c¢)

e (pi, gi) < closest pair of box representatives

@ G <« closest pairs. Return MST(G)

Arya and Mount

HALG 2016
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Roadmap

@ Preliminaries - Well-separated pairs, quadtrees, EMST lower bound
@ Algorithm - Getting closest pairs on the cheap

@ Analysis - On the importance of being sloppy
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Approximation Analysis (First Attempt)

@ Case 1: Box diameters < ¢s:

B
o Absolute error < es < ¢ - dist(A;, B;) SEse [
o Relative error < e : | $‘>/é.m -
o Case 2: Number of nonempty boxes > c/e: ; -
o Let § be the diameters of the boxes -~
o Absolute error 5 ¢
e By Lemma, weight of MST within box B;
> 8(c/e)/c=6/e 6
Relative error is < ¢ (amortized over the Ai ﬁ??/_
’ box) . B
S - weight > §/e

... hey, aren’t you multiply charging?
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Approximation Analysis (Finer Points)

We charge the same MST edge multiple times:

o Multiple WSPs share the same quadtree box

— each box is in O(ﬂ)d = O(1) WSPs A; -+

— increase ¢ by this constant

@ Multiple tree levels charge the same edge
— further increase ¢ by tree height
— x O(log 2) [Arora (1998)]

@ Reducing the log factor
— A more refined analysis reduces the log

factor to O( log %)
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Execution Time

o Build the quadtree and WSPD: O(nlog n)

@ Find the approximate closest pair for each WSP:
e O(n) well-separated pairs

o O(c ' log 1) boxes per pair

° O(e_2 log® %) representative pairs per WSP
e Compute the MST of G: O(nlogn)

o Total time: O(nlogn+ (¢2log?L)n) = O(¢~2n)
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Concluding Remarks

@ Summary:
o c-approximate EMSTs in R? in O(c~2n) time
e Simple, deterministic algorithm (quadtrees, well-separated pairs)
o Caveats:
o EMST minimizes the bottleneck (max) edge cost — but ours does not
e Big-Oh hides constant factors that grow exponentially with dimension
o Further Work:
o Implementation (we're working on it)
o Approximate minimum bottleneck spanning tree in similar time?
o Reduce 72 (while maintaining simplicity)?

o Is the log 1 factor needed (or artifact of analysis)?
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