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Introduction

Euclidean Minimum Spanning Tree

Euclidean MST

Given a set P of n points in Rd , the
EMST of P is the minimum spanning
tree of the complete graph on P,
where each edge is weighted by the
Euclidean distance between these
points.

d is constant

Results generalize to common
norms (L1, L∞)
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Introduction

Approximate EMST

As d grows, exact algorithms for the
EMST run in nearly quadratic time.

ε-Approximate EMST

Return a spanning tree whose weight
is at most (1 + ε) · wt(MST(P)).

Exact

Approximate
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Introduction

Prior Results - Computing the Whole Tree

Exact in Rd :

Yao (1982): Õ
(
n

2− 1
2d+1

)
Agarwal et al. (1991): Õ(n2− 4

d )

ε-Approximate in Rd : (Asymptotic d)

Har-Peled, et al. (2012): Roughly Õ
(
d · n1+ 1

1+ε
)
→ using LSH

ε-Approximate in Rd : (Constant d)

Vaidya (1991): Õ(ε−d · n)

Callahan and Kosaraju (1995): Õ(ε−
d
2 · n) → using WSPDs

Arya and Chan (2014): Õ(ε−( d
3

+O(1)) · n) → using DVDs

Ideal: Nearly linear in n and low dependency on ε: 1
εd
→ 1

εd/2 → 1
εd/3 → · · ·
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Introduction

Prior Results - Estimating the Weight

ε-Approximating the weight of the MST (w.h.p.) in sublinear time:

Chazelle et al. (2005) O(DW ε−3)
(for graphs of degree D and edge-weight spread W )

Czumaj et al. (2005) Roughly O(
√
n · ε− d

2 ) for EMST
(assuming appropriate geometric oracles)

Czumaj and Sohler (2009) O(n · poly(1/ε)) for MST in metric space
(presented as an n × n distance matrix)
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Introduction

Main Result

Existing approximation algorithms either:

Have ε-factors that grow exponentially with dimension (ε−d or ε−
d
2 )

— or —

Just estimate the weight of the EMST

ε dependencies are a major issue. Is it possible to reduce them?

Main result:

ε-approximate EMSTs in Rd in Õ(ε−2n) time (constants depend on d)

Simple, deterministic algorithm (quadtrees, well-separated pairs)

Exploits a simple EMST lower bound (Czumaj et al. 2005) and an
amortization trick
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Introduction

Roadmap

Preliminaries - Well-separated pairs, quadtrees, EMST lower bound

Algorithm - Getting closest pairs on the cheap

Analysis - On the importance of being sloppy
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Preliminaries

Well-Separated Pairs

Well-Separated Pair:

Given a separation parameter σ ≥ 1, two point
sets A and B are σ-well separated if they can be
enclosed within balls of radius r such that the
closest distance between these balls is at least σ r

≥ σr

r

r

A

B
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Preliminaries

Well-Separated Pair Decomposition

Well-Separated Pair Decomposition (WSPD):

Given a point set P, a σ-WSPD is a set of
pairs {{Ai ,Bi}}ki=1 of subsets of P such that:

(1) for 1 ≤ i ≤ k , Ai and Bi are σ-well
separated

(2) for any p, q ∈ P, there is exactly one pair
{Ai ,Bi} such that p ∈ Ai and q ∈ Bi

p

q

p

q
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Preliminaries

Useful Observations (Callahan and Kosaraju (1995))

A 2-WSPD of size O(n) can be constructed
in time O(n log n)

Each pair of a 2-WSPD contributes at most
one edge to the EMST

Given a 2-WSPD for P, form a graph G from
the closest pair from each (Ai ,Bi )

|G | = O
(
n
(
2
√
d
)d)

= O(n)

MST(G) = EMST(P)

ε-approximate closest pairs yield a graph Gε

wt(MST(Gε)) ≤ (1 + ε) · wt(EMST(P))

Ai

Bi

Ai

Bi
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Preliminaries

Fast EMST Lower Bound

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in Rd . Let m be
the number of grid boxes containing at least one
point of P. Then there is a constant c (depending
on d) such that wt(MST(P)) ≥ s m/c .

Proof:

Color the grid with 2d colors. Boxes of the
same color are separated by distance ≥ s

Some color class has at least m/2d boxes

The cost of connecting these boxes is Ω(s m)

≥ s
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Algorithm and Analysis

Roadmap

Preliminaries - Well-separated pairs, quadtrees, EMST lower bound

Algorithm - Getting closest pairs on the cheap

Analysis - On the importance of being sloppy
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Algorithm and Analysis

Simple (Slow) Algorithm

Compute a 2-WSPD for P

Each box stores a representative point

For each WSP (Ai ,Bi ):

Let s be the box size. Subdivide Ai and Bi

until the box diameter ≤ εs
(pi , qi )← closest pair of box representatives

G ← closest pairs. Return MST(G )

Slow! O(n/(εd)2) = O(n · ε−2d).

Worst case arises when pairs have many boxes.

By Lower-Bound Lemma, MST cost is high.

Ai

Bi

s

pi
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Algorithm and Analysis

A Smarter/Sloppier Algorithm

Compute a 2-WSPD for P

Each box stores a representative point

For each (Ai ,Bi ) approximate the closest
pair:

Let s be the box size. Subdivide Ai and Bi

until either:

Box diameter ≤ ε s — or —

The number of nonempty boxes ≥ c/ε
(for some constant c)

(pi , qi )← closest pair of box representatives

G ← closest pairs. Return MST(G )

Ai

Bi

s

pi
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Algorithm and Analysis

Roadmap

Preliminaries - Well-separated pairs, quadtrees, EMST lower bound

Algorithm - Getting closest pairs on the cheap

Analysis - On the importance of being sloppy
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Algorithm and Analysis

Approximation Analysis (First Attempt)

Case 1: Box diameters ≤ εs:

Absolute error ≤ εs ≤ ε · dist(Ai ,Bi )

Relative error ≤ ε

Case 2: Number of nonempty boxes ≥ c/ε:

Let δ be the diameters of the boxes

Absolute error / δ

By Lemma, weight of MST within box
≥ δ(c/ε)/c = δ/ε

Relative error is / ε (amortized over the
box)

. . . hey, aren’t you multiply charging?

Ai

Bi

Ai

Bi≤ εs

s

s≥ s

δ

weight ≥ δ/ε
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Algorithm and Analysis

Approximation Analysis (Finer Points)

We charge the same MST edge multiple times:

Multiple WSPs share the same quadtree box

— each box is in O
(√

d
)d

= O(1) WSPs
→ increase c by this constant

Multiple tree levels charge the same edge
→ further increase c by tree height
— × O

(
log n

ε

)
[Arora (1998)]

Reducing the log factor
— A more refined analysis reduces the log
factor to O

(
log 1

ε

)

Ai
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Algorithm and Analysis

Execution Time

Build the quadtree and WSPD: O(n log n)

Find the approximate closest pair for each WSP:

O(n) well-separated pairs

O(ε−1 log 1
ε
) boxes per pair

O(ε−2 log2 1
ε
) representative pairs per WSP

Compute the MST of G : O(n log n)

Total time: O
(
n log n +

(
ε−2 log2 1

ε

)
n
)

= Õ(ε−2n)
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Wrap-Up

Concluding Remarks

Summary:

ε-approximate EMSTs in Rd in Õ(ε−2n) time

Simple, deterministic algorithm (quadtrees, well-separated pairs)

Caveats:

EMST minimizes the bottleneck (max) edge cost — but ours does not

Big-Oh hides constant factors that grow exponentially with dimension

Further Work:

Implementation (we’re working on it)

Approximate minimum bottleneck spanning tree in similar time?

Reduce ε−2 (while maintaining simplicity)?

Is the log 1
ε
factor needed (or artifact of analysis)?
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Wrap-Up
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