Greedy Algorithms for Steiner Forest

Anupam Gupta
Carnegie Mellon University

Amit Kumar
Indian Institute of Technology, Delhi

STOC 2015 / Arxiv
the Steiner forest problem

Given set of source-sink pairs \((s_i, t_i)\) in a metric space.

Find a min cost set of edges connecting the pairs.

APX-hard

LP-based factor-2 approximations

[Primal Dual: Agrawal Klein Ravi ’91]
[LP rounding/Integer decompositions: Chekuri Shepherd ’04]
All demand (pairs) have a common source.
also APX-hard.
\ln(4)-approximation
[Byrka Grandoni Rothvoß Sanità ’10]
MST is a simple factor-2 approximation
special case: Steiner tree

compute metric on terminals
repeat
 find terminal t closest to the source s
 merge t into s (set their distance to zero)
 recompute the metric
until all terminals contracted into s.

red edges: bought
special case: Steiner tree

compute metric on terminals
repeat
 find terminals \(a, b\) closest to each other
 merge \(a, b\) (set their distance to zero)
 recompute the metric
until all terminals contracted into \(s\).
Is there a greedy constant-factor approximation for Steiner forest?
compute metric on terminals
repeat
 find terminal t_k closest to its mate s_k
 merge s_k, t_k (set their distance to zero)
recompute the metric
until all terminals contracted with their mates.

Not a constant-factor approximation.

[Awerbuch Azar Bartal ’96, Chen Roughgarden Valiant ‘10]
Consider a degree 3, girth $\log n$ graph G.

Fix spanning tree T of G. $(n/2$ edges not in T.)

Edges of T: length 1, others: length $(\log n)/2$

M: matching in $G-T$ of size $\Omega(n)$

For each edge e in M,

have a source-sink pair as end-points of e.

OPT $\leq n-1$

Greedy is $\Omega(n \log n)$

Why? Any s-t path has length $\geq (\log n - 1)$, and at most half of these are from M.
Theorem: The “gluttonous” algorithm is a constant-factor approximation algorithm.
our results

Theorem 1:
The gluttonous algorithm is an $O(1)$-approximation for Steiner Forest.

Theorem 2:
There is a simple $O(1)$-approximation algorithm for two-stage stochastic Steiner forest.
(sampling λ times from the given distribution, use gluttonous to build a solution to that, augment as necessary.)
compute metric on terminals
repeat
 find active terminals a, b that are closest
 merge a, b (set their distance to zero)
 recompute the metric
until all terminals merged with their mates.

Supernode: set of terminals which have merged together
each supernode is either “active” or “inactive”.

Observation 1: Once a supernode becomes inactive,
it does not merge with any other supernode.

Observation 2: The distance of the current closest pair is
non-decreasing over time.
another example
another example
another example
another example
another example
compute metric on terminals
repeat
 find active terminals a, b closest
 merge a, b (set their distance to zero)
 recompute the metric
until all terminals merged with their mates.

1. Reduce to the special case when (morally) OPT is a single tree.
2. When merging two terminals, charge merging cost to reduction in OPT.
the single tree property

would like: if S is a supernode we create, then all terminals in S are in the same tree of OPT.

OPT

Glut

s_2, s_7, t_7, t_2
$s_3, s_4, s_5,$
t_3, t_4, t_5

s_6, t_6, s_1, t_1

t_3

s_4

t_4

s_5

t_5
how to get the single tree property

Obtain single tree property by at most doubling the OPT cost.
1. Reduce to the special case when (morally) OPT is a single tree.
2. When merging two terminals, charge merging cost to reduction in OPT.

compute metric on terminals
repeat
 find active terminals a, b closest
 merge a, b (set their distance to zero)
 recompute the metric
until all terminals merged with their mates.
analysis: merging cost

candidate OPT tree on set of active supernodes

candidate OPT tree on new set of active supernodes

ensure that all Steiner vertices have degree ≥ 3.

Want: Merging cost $\leq 10 \times$ reduction in cost from old tree to new
Want: Merging cost $\leq 10 \times$ reduction in cost from old tree to new

eNSure that all Steiner vertices have degree ≥ 3.

Want: Merging cost $\leq 10 \times$ reduction in cost from old tree to new
a problematic case

All edges on the cycle are short, all Steiner nodes degree-3 or higher
cost reduces “on average”

Look at all mergings done with distance in \([10^k, 10^{k+1}]\)

Assume number of active supernodes drops by 4/5. (else some later scale can pay for it)

old tree had \(N\) active supernodes

inactive supernodes have degree \(\geq 3\) \(\Rightarrow\) \(\leq 2N\) edges
active supernodes at least \(10^k\) apart
at least \(4N/5\) supernodes merge

\(\Rightarrow\) many merges can delete “long” edges of length \(\geq 10^{k-1}\).
why can many merges delete long edges?

Consider the long edges and the components of just short edges.

If two merged supernodes in the same component may not be able to charge, but edge/supernode ratio at least 5 in this component!

Overall tree has lower ratio (2.5)!! (2N edges, 4N/5 supernodes merge)

⇒ half the supernodes can charge to long edges.
Constant-factor greedy algorithm for Steiner forest
("contract closest active terminals & repeat")

Simple algorithm, simple analysis.
 paper also analyzes several close cousins, cost shares, stochastic variants

Constant is about 100, can we get a factor of 2?
 Greedy for other problems in the constrained forest framework?

Other non-LP techniques for network design problems?
 Recent work: A **local-search** constant factor for Steiner forest
 (with Martin Groß, Amit Kumar, Jannik Matuschke, Daniel Schmidt, Melanie Schmidt, Jose Verschae)